默认text 类型会有一个keyword 字段类型
区别:精确值不需要做分词处理
在Tokenizer 之前对文本进行处理,例如增加删除及替换字符,可以配置多个Character Filters 。会影响TOkenizer 的position和offset 信息。
一些自带的Character Filters
HTML strip 去除html 标签
Mapping 字符串替换
Pattern replace 正则匹配替换
示例
POST _analyze { "tokenizer": "keyword", "char_filter": ["html_strip"], "text": "<b>hello world</b>" } // 使用char filter 进行替换 POST _analyze { "tokenizer": "standard", "char_filter": [ { "type": "mapping", "mappings": ["- => _"] } ], "text": "123-456, I-test! test-990 650-555-1234" } // 替换表情符号 POST _analyze { "tokenizer": "standard", "char_filter": [ { "type": "mapping", "mappings": [":) => happy", ":( => sad"] } ], "text": "my today :) ,but :( !!!" } // 正则表达式 GET _analyze { "tokenizer": "standard", "char_filter": [ { "type": "pattern_replace", "pattern": "http://(.*)", "replacement": "$1" } ], "text": "http://www.baidu.com" }
将原始的文本按照一定的规则,切分为词(term or token)
Elasticsearch 内置的Tokenizers
whitespace / standard / uax_url_email /pattern /keyword/ path hierarchy
可以用java 开发插件,实现自己的Tokenizer
示例:
// 文件路径切分 POST _analyze { "tokenizer": "path_hierarchy", "text": "/usr/local/a/b/c/d/e" }
将Tokenizer 输出的单词(term), 进行增加,修改,删除
自带的Token Filters
lowercase / stop / synonym (添加近义词)
示例
// whitespace 与stop 以空格切分,并且去掉in the on 介词 GET _analyze { "tokenizer": "whitespace", "filter": ["stop"], "text": ["The rain in Spain falls mainly on the plain."] } // whitespace 加入lowercase 后,介词The 改为小写被删除 GET _analyze { "tokenizer": "whitespace", "filter": ["lowercase","stop"], "text": ["The rain in Spain falls mainly on the plain."] }
设置一个自定义Analyzer
// 创建索引指定分词器 PUT my_inx { "settings": { "analysis": { "analyzer": { "my_custom_analyzer": { "type": "custom", "char_filter": [ "emoticons" ], "tokenizer": "punctuation", "filter": [ "lowercase", "english_stop" ] } }, "tokenizer": { "punctuation": { "type": "pattern", "pattern": "[ .,!?]" } }, "char_filter": { "emoticons": { "type": "mapping", "mappings": [ ":) => _happy_", ":( => _sad_" ] } }, "filter": { "english_stop": { "type": "stop", "stopwords": "_englist_" } } } } } POST my_inx/_analyze { "analyzer": "my_custom_analyzer", "text": "I'm a :) persion, and you?" }